The correlated evolution of three-dimensional reproductive structures between male and female damselflies

Publication Type:Journal Article
Year of Publication:2009
Authors:M. A. McPeek, Shen, L., Farid, H.
Journal:Evolution
Volume:63
Pagination:73-83
Date Published:Jan
Abstract:

For many taxa, species are defined by the morphologies of reproductive structures. In many odonates, these structures are the cerci of males (used to hold females during mating) and the thoracic plates of females where the male cerci contact the females' bodies. A previous study showed that the shapes of cerci of Enallagma males (Zygoptera: Coenagrionidae) are best explained by an evolutionary model of punctuated change at the time of speciation, with a homogeneous rate of change across the entire phylogeny of the genus. In the present study, we examine the evolution of shape change in the corresponding female plates. We found that, like male cerci, the shapes of Enallagma female thoracic plates could best be explained by an evolutionary model of punctuated change at the time of speciation, with a homogeneous rate of change across the clade. Moreover, the evolutionary contrasts quantifying the rates of change in male cerci and female thoracic plates were positively related across the history of the clade, demonstrating that these male and female structures evolve in a correlated fashion. This pattern of evolution suggests that these structures are primary signals of species identity during mating.

Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith